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SECTION 1

INTRODUCTION

The tendency of spacecraft and spacecraft surfaces to charge has
been noted since the beginning of satellite flight. Spacecraft charging
appears to be particularly severe at geosynchronous orbit. Spacecraft frame
potentials of thousands of volts negative with respect to the ambient space

plasma have been observed during eclipse on the ATS-5 and ATS-6 spacecraftl_6

and the SCATHA1’7’8

satellite. The largest potential observed to date was
~-19 kV on ATS-6 during eclipse, but potentials as high as ~2.2 kV have been
seen in sunlight.s’9 These potentials result from a natural balance of the
charged particle fluxes to the spacecraft surfaces from the ambient electron

1,10 Spacecraft

and ion population following a geomagnetic substorm.
potentials are generally negative since electrons have higher mobilities as
compared to ions. Overall spacecraft frame charging enhances surface
contamination which can cause the degradation of thermal and optical
surfaces. In addition, charging interferes with science measurements of the
ambient space environment.

Of more concern than overall spacecraft charging is differential
charging of adjacent surfaces, or differential charging resulting from charge
deposition in dielectrics. Differential charging and it's subsequent
electrostatic discharge (ESD) is believed to be responsible for much of the

. |
9,11-16 The transient

anomalous behavior seen on various satellites.
electrical impulses produced as a result of ESD can couple into the spacecraft
electronics and cause problems ranging from logic upsets to complete system

failures. In addition, ESD can cause mechanical damage to spacecraft surfaces

and enhance surface contamination.
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As a result of the connection between anomalous satellite behavior,
differential charging and ESD, considerable effort has gone into developing
methods for preventing spacecraft charging using both passive and active
means. Passive means include the use of conductive materials on spacecraft
surfaces, use of proper grounding techniques and filtering of electtonics.17
Active spacecraft charge control encompasses the use of a wide range of
charged particle emitters, including electron, ion and plasma emitters. All
active charge control devices have been successful, to some degree, in
discharging overall and differentiaiiy cha ¢2d spacecraft. However, only
devices emitting a neutral plasma have been found to maintain spacecraft
potentials near plasma ground and significantly suppress differential
charging.2_7’17

This report details the development of a unique hollow cathode,
neutral plasma source for use in controlling spacecraft charging. As
originally envisioned, this device was to be part of the Satellite Active
Automatic Discharge System (SAADS) on the Air Force Geophysics Laboratory
(AFGL) Beam Emission Rocket Test-1 (BERT-1) sounding rocket. The Jet
Propulsion Laboratory (JPL) was charged with the responsibility of developing
the plasma source device within the AFGL BERT-1/SAADS program. AFGL retained
responsibility for requirements definition, qualification testing, sounding
rocket integration, flight operations and data reduction. Launch window
constraints coupled with the need for AFGL to rebuild an electrostatic
analyzer prevented final integration of the JPL plasma source into the BERT-1

sounding rocket.

1-2

Bt G R P bl Lab SR Al Ading Ba & 0% 150 o £ 0 8 /0 aa e oig e SRR

Pt

R

S
‘4




T AT T TR ey ey Lt oo
Se S T N Ty Y N e T T o ™ W~ W W W wwr e s~ 5 = § w1 =y
o i e N 3, R

6 .
PR
v

i
The plasma source spacecraft discharge device as developed during ii
this program, is capable of turning on in less than five seconds and has ;é
demonstrated the ability to prevent charge buildup and discharge charged ET
surfaces to ground potential during ground simulation tests. The general g;
. operating principle of the hollow cathode plasma source is .described first, gg
including the specific details of hollow cathode operation. A detailed §7
description of the prototype flight plasma source system is given next :ﬁi
including a mechanical and functional description of the support vessel and E;{

i

hollow cathode, power processor and gas handling system. The environmental

testing is then described followed by a detailed discussion of plasma source

operation and some concluding remarks.
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SECTION 2

PLASMA SQURCE DEVELOPMENT

This section discusses the design rational, operating principles

and performance characteristics of the plasma source spacecraft charge control

device.

2.1 BASIC CONSIDERATIONS
A charged spacecraft, or spacecraft surface cannot generally bleed
it's charge back to the surrounding low density space plasma since the

electrical conductivity of the intervening plasma sheath region between the

spacecraft and space plasma is too low. In order to reduce the potential of e
the spacecraft, it is necessary to artificially increase the electrical ;?i;
conductivity between the spacecraft and surrounding space plasma. An 5é§
effective way of doing this is to form a relatively high conductivity plasma i;f
bridge to allow the passage of positively and negatively charged particles g}i{
through the sheath. The plasma bridge provides an additional source of 4;3
charged particles for current balance to reduce and prevent spacecraft-surface Eﬁ:ﬁ
potential buildups. This process may be thought of conceptually by :if
visualizing the spacecraft and surrounding space plasma as the charged plates r;zj

-

of a capacitor and the sheath as the medium between the plates. The plasma

bridge acts as a shorting strip across the capacitor. The plasma bridge must

be established in a controlled way with an adequate particle flux and spatial

extent to ensure that the spacecraft, or portion thereof, is returned to zero
space potential without experiencing an uncontrolled and potentially damaging
arc discharge (ESD). ;2-:
rod
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2.2 PLASMA GENERATION REQUIREMENTS

There are many ways that one can create a plasma and even more
devices that utilize these various production methods for applications as
diverse as fluorescent lighting to controlled fusion nuclear reactors. For
the sounding rocket plasma source application the specific starting and oper-
ating requirements are listed in Table 2-1. A precedent has been established
in the plasma generation technique used for active spacecraft charge control
by the successful charge control experiments on the ATS-6 and SCATHA

satellites which used small ion engines and hollow cathode plasma bridge ion

beam neutralizers.3—7 During tests with these satellites it was observed
that the hollow cathode plasma bridge neutralizer was sufficient to control
satellite charging under a variety of space plasma environments. These
results are consistent with previous experiments where hollow cathode plasma
bridge neutralizers were used to neutralize the positive ion beam emerging

from an ion engine spacecraft propulsion system.l‘s_20

For that application,
the hollow cathode created a plasma bridge for electron flow between itself
and the ion beam edge which was generally several centimeters away.

A hollow cathode discharge typically produces plasma densities on

0—1021 m-'3 just downstream of the cathode orifice.

the order of 102
Electrons in this plasma have an average temperature of about 1.0 eV while
ions have the cathode thermal temperature of approximately 0.1 eV. The much
higher electron speed means that, in the plasma bridge coupling process, the
electrons are carrying most of the current. Furthermore, the low thermal ion
velocity encourages plasma flow by ambipolar diffusion which ensures adequate

space charge coupling of the ions to the emitted hollow cathode electrons so

that a significant ion population is always present in the plasma bridge.
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2 Table 2-1. Functional Design Requirements for the Prototype Plasma Source
Parameter Requirement
Startup Time <5 s
Working Gas ‘ Krypton
' Startup Energy 2500 W-s
Run Power 200 W
Particle Currents:
Extracted Electron >20 mA
Extracted Ion 20 pA
Electron Leakage <2 mA
Mass <12.25 kg
Lifetime:
Total 450 s
Duty Cycle (Max.) 0.3
Starts >36

It was felt that the functional requirements of t) plasma source
could be best met by designing the plasma source around a hollow cathode
plasma generator. However, typical ion engine hollow cathode designs require
several minutes to turn on and achieve stable operation. As seen in
Table 2-1, long startup times were not acceptable for the proposed sounding
rocket application. In addition, a further requirement not listed in
Table 2~1, was that the plasma source hollow cathode not be subject to failure
after exposure to air and moisture between ground tests. This latter
requirement was to obviate the necessity for keeping the plasma source under
carefully controlled vacuum conditions before and during the launch.
Controlled vacuum enclosures were required to prevent contamination of the

rare earth oxide hollow cathodes used in ion engines in the past.6'7'18_21
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2.3 DESIGN AND OPERATING CHARACTERISTICS
In order to satisfy the rapid start requirement of less than 5 s
as well as provide resistance to contamination, a hollow cathode design was

selected for the plasma source which had previously demonstrated these desir-

able features.22 A schematic of the plasma source, delineating the basic
features of the hollow cathode, containment vessel, control electrode and the
power processor is shown in Fig. 2-1. Figure 2-2 shows the hollow cathode
emitter tube assembly and Fig. 2-3 shows the plasma source fully assembled in
the JPL test configuration. The Field Enhanced Refractory Metal (FERM) hollow
cathode used with the plasma source is significantly different from most other
cathode designs in that the plasma generation process is contained completely
within the hollow cathode barrel. No external sustaining electrodes are
needed. The hollow cathode is started by applying 300-400 volts between the
central emitter tube and surrounding cathode barrel, as shown in Figure 2-1.
In this arrangement, the cathode barrel acts as an anode and the working gas,
which is flowing through the cathode, breaks down resulting in a glow discharge
to the central cathode emitter tube. Ion bombardment of the emitter tube
rapidly heats the tube end to thermionic electron emitting temperatures. The
much larger heat capacity of the cathode barrel prevents this component from
heating significantly during the starting process. When the tube reaches
thermionic emission temperatures, the cathode transitions from a glow to an
arc aischarge, resulting in a low coupling voltage between the emitter tube
and surrounding cathode barrel. Once this arc is established, the cathode is
said to be on and is a stable, high density plasma source. The entire

starting sequence takes less than five seconds.
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Plasma flows with either predominately electron or ion currents,
may be extracted through the cathode orifice by applying either a positive or
negative bias, respectively, to the external keeper electrode shown in
Figure 2-1. Ambipolar diffusion ensures that, for the few tens of volts
keeper electrode bias, a plasma will be drawn from the cathode.

Typical volt-ampere starting characteristics for the plasma source
hollow cathode are shown in Fig. 2-4 (a,b). The power consumed as a function
of time is shown in Fig. 2-4c where it can be seen that the starting energy
(watt-secs) and running power level are well within the design specifications
listed in Table 2-1. The most critical parameter controlling the turn on time
and hollow cathode power consumption is the heat capacity of the end portion
of the emitter tube where the plasma discharge occurs. It was found from
previous studies of the FERM cathode22 and during this development program
that only the last 2-3 mm of the emitter tube emitted thermionic electrons and
participated in the plasma discharge. As a result, the emitter tube tip was
optimized for minimum heat capacity while providing good mechanical strength.
This optimization process resulted in the particular emitter tube design shown
in Fig. 2-2 which has a lifetime of hundreds of start and run cycles.

No rare earth oxide impregnates are used in the FERM cathode
emitter tube to lower its electron work function, thus eliminating the
poisoning problem which often occurs with low work function impregnates upon
exposure to air and moisture. The pure tantalum emitter tube of the FERM
cathode can be exposed to humid air after use and, then, placed under vacuum
again and restarted with no significant change in it's start or run

characteristics.
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2.4 PRESSURE AND GAS FLOW REQUIREMENTS

An important parameter in successfully starting the plasma source,
was ensuring that the hollow cathode internal gas stagnation pressure was in
the p-oper range, given by the Paschen break down curve, for a minimum
potential glow discharge to occur. For the plasma source cathode barrel and
emitter tube geometry, low Paschen break down voltages are realized, for most
gases, with a pressure distance product of about 1.0 Torr—cm.23 Various
tests were performed to determine the emitter tube to cathode orifice plate
separation that gave the most reliable cathode startup and the lowest run
power requirements. Eventually, a separation distance of 4.8 mm was
selected. Consequently, the stagnation pressure within the cathode for most
reliable startup was about 2.0 Torr. The plasma source has been operated on
krypton, argon and xenon. Stagnation pressure measurements were taken (with
the cathode off) at a variety of flow rates for each gas tested. Cross
plotting these data for the optimum cathode internal pressure of 2.0 Torr
gives the required gas flow rate as a function of the molecular weight of the
flowing gas as shown in Fig. 2-5. This curve is for the particular cathode
orifice diameter of 1.00 mm and orifice plate thickness of 1.83 mm used in the

plasma source cathode developed under this program.
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FLIGHT PLASMA SOURCE SYSTEM
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A detailed description of each flight subsystem (hollow cathode and

LA
[4

7
2

vessel, gas system and power processor) is given, followed by a description of

U .

the overall plasma source system.

3.1 SUPPORT VESSEL AND HOLLOW CATHODE ail

k.

The flight plasma source vessel is shown in Fig. 3-1 and schemat- A

ically in Fig. 3-2. This vessel is fabricated from 304 stainless steel and ﬁ.ﬁ
has a wall thickness of approximately 0.15 cm. It's overall length is ﬁgd

approximately 20.0 cm with a maximum width of approximately 14.6 cm. The o

mounting ring has a thickness of 0.48 cm and has an outer diameter of

N
[N

13.3 cm. The mounting ring, feedthroughs and cone at the rear of the vessel ;f
are heliarc-welded in place. The three feedthroughs on the support vessel %;ﬁ
body are commercially available high-vacuum, high-voltage feedthroughs and are ;}i
brazed to the feedthrough ports. The two forward feedthroughs were for a %23
plasma probing system and are not used. A Rulon insulating ring can be seen ;;}
on the downstream end of the vessel. &;&E
The back side of the keeper electrode assembly and the cathode i;;
barrel are shown in Fig. 3-3 before the rear cone was welded to the front por- %ﬁ?
tion of the flight support vessel. The keeper bias wire runs from the é
feedthrough to a nut attached to the keeper electrode via a keeper tie-down :f;
bolt. This wire is sheathed in ceramic insulators. All four nuts on the T;F
keeper tie-down bolts are spot-welded in place to prevent them from backing 1£2
off. The keeper electrode is mounted in an insulating, boron nitride block ;;s
and is a 4.76 cm diameter, 0.1 cm thick tantalum plate with a 0.32 cm center :;?

3-1

-

\.‘..'-.....-..-.\,

.
R LA Ny e e e e e e AT T et T e S e RIS A I IR
A N DTS DS L WY F SR B ORI G N LT SN e YW TP I SV S DRV V. L. WX SRS e L




-,

T

-

had v

19ss9) 9%1nog pUWSE]d °‘J-f 2In8Tg




i .
K.
L}
«
A
[
° 3.487
a %+ 3.a60 1
2813 X
. Fowar
. ;:;:ﬁ:wa o) w—,'
- (veT v$6D) 1
- b T ~—kerrgR
Al BIAS FEEDTHROUMM
.- l;n.r
g 8 ~a21.5°
N . REM poRrijon
. /oF Puion CATHOOE
- - 1
- 2,150 JEP 2750
Jaso 7 - 1230
' . L {hons
“
. |-
& 1375
A Rolon — ¢ WitD
. 115 ulatiey wall thoknegs & — f.625 - —
[ ring (33 o.e60"
B matetial ¢ 304 Y16 0
E - ?:;’:'r” SwAsELOK
’ o""ﬂ ', FsrTInG
o 3 Fowarp
A FEED rqdoueH
X 'l (NOT vse0)
K — . 000
( ——/ 41g —
| qooo —-———c|
7.75¢ ;
: SIDE VIEW OF SUPPORT VESSEL
.
— 2182 ———¢
. 2,687 -_.———.1
q AEroRe
. crAZE
8oRoN
NITRIDE
INSUW ATING
MOLYBY  um
. CATH LE
. TANTALUM BAL-EL
LEER;“) s:lg:sw )
S £ 1
- Erker = 304  AINLESS
o STE . SUPPORT
o % @ oko Ve gL BoOY
: () @ -
-, /( 0 040 \ \
<) - £FORE BEFORE
> .' em.o = i O
. sEroae AN ]
-~ wEeLD 4 ~
o
SUPPORT VESSEL INTERNAL DETAIL
1o
Figure 3-2. Schematic of Plasma Source Vessel

- 2 -
P PR S L St S O P R . D I SR P IS A e et et ot <.

- . AT - [P et . et . N R T AU A AR
s NG GNPV O SV S g By P . PN T Dy . ) NPOS WG WY W T U TR S I W DY




o i it edt Bt TR S Ak Al S A A LS A

R

View of Keeper Electrode Assembly and Cathode Barrel Before

Final Fabrication of the Vessel

Figure 3-3.

. VT AN _-.(.
SR RN SR R A Wi G
LN N Yot SR D S Tl T TS T Sl WY G T e W o

L T P Y RN .
I LI PR

W TN P Sl S AP S P P Y




hole. The rear cone angle is approximately 27.5 degrees. The hollow cathode
barrel is a 7.6 cm long, 1.3 cm outer diameter molybdenum tube which is high
temperature brazed to the flange machined onto the small end of the support
vessel cone. The brazing alloy used was Wesgo-type Palaro, which has a nominal
composition of 92 percent Au and 8 percent Pd. An 80 percent dense 0.183 cm

thick, tungsten plate is welded to the end of the molybdenum tube and contains

ﬁ a 0.1 cm orifice. The orifice serves as the exit for the low energy, hollow

cathode plasma. Rulon insulating bushings can be seen on the back surface of
the mounting flange.

The downstream side of the keeper electrode and support vessel are
shown in Fig. 3-4. All bolts used to mount the keeper electrode and boron
nitride insulator ring are wired together to prevent them from backing out
when subjected to vibration testing and the launch loads. The cathode orifice

is back-lit so it is easily recognized.

The emitter tube assembly shown in Fig. 2-2, consists of a commer-

cially available vacuum, high-voltage feedthrough welded to a 0.7 cm thick,
3.2 cm diameter stainless-steel mounting flange. A 0.32 cm stainless-steel

tube is welded to the threaded end of the feedthrough which joins a 0.48 cm

stainless-steel tube inside the feedthrough. A 3.0 cm long, tapered, tantalum

emitter tube is threaded onto the other end of the 0.48 cm stainless-steel N
tube. The 0.48 cm diameter tube and the first 0.5 cm of the Ta emitter tube ol
are covered by a mullite insulator. The 0.32 cm tube is bent to avoid contact :l_%‘

with the components of the gas handling system.
A schematic of the flight cathode emitter tip is shown in Fig. 3-5.
Three separate copies of this emitter tip were shipped to AFGL with the plasma

source system, along with detailed accounts of each emitters complete run

history. The specific parameters for each tip are given in Fig. 3-5. fffj{
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1.113 0.030 0.452
1.113 0.030 0434

1.113 0.030 0.452

* ANGLES IN DEGREES, OTHER PARAMETERS IN CENTIMETERS.

* SPACING BETWEEN END OF EMITTER TUBE TIP AND
BACKSIDE OF CATHODE ORIFICE PLATE.
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Cathode emitter tip M was installed in the plasma source at delivery. This
tip design appears to provide fast, reliable cathode starts with cold cathode
starting times of approximately 3 to &4 seconds, and was the result of an

extensive cathode optimization program.

3.1.1 Cathode Emitter Tube Handling Procedure

Hollow cathode emitter tube handling guidelines are given in
Table 3-1. These guidelines are necessary since handling and exposing the
cathode to the ambient environment have, on occasion, resulted in an initial
start time in excess of 5 secs. during its next use. After exposure to the
ambient environment, a cathode emitter tube can be reconditioned by starting
and running it in an arc discharge for at least 5s to ensure that it is
clean. Additional testing would be required to pin down and categorize

exposure hazards.

3.2 GAS SYSTEM

The gas system is shown in Figs. 3-6 and 3-7 mounted on the magne-
sium BERT-1 flight deck plate. It consists of a reservoir, fill-fitting and
pressure transducer, latching valve, pressure regulator, flow-metering valve
and the interconnecting cabling and tubing. The working gas is krypton.
Table 3-2 summarizes the main characteristics of the gas system. The
components in this assembly were provided to JPL by AFGL and aside from the
flow metering valve were spare parts from the SPIBS inst.rument.21 Mounting
of the gas system is accomplished with stainless-steel straps around the
reservoir and over the regulator with the tlow metering valve mounted on an
aluminum bracket. The pressure regulator outlet is connected to the metering

valve inlet via 0.32-cm outside-diameter, stainless-stcel tubing and swagelok
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Table 3-1. Guidelines for Handling Hollow Cathode Emitter Tubes

A. After Operation:

1. Cool for 15 minutes with the gas flow on before venting the
vacuum facility up to atmosphere.

2. Vacuum tank should have a dust filter on the vent port.

3. The cover should be placed over the plasma source opening after
venting up the vacuum system.

B. After removal from cathode barrel (also applies to spares):
1. Never touch the emitter tube tips.
2. When handling the emitter tubes, wear white cotton gloves.
3. When removing the emitter assembly, hold vessel so plasma source

opening is up; this will prevent the Mullite insulator from
slipping off and falling.

fittings. The metering valve outlet is connected to the hollow cathode gas
inlet via 0.48-cm outside-diameter Tygon tubing and swagelok fittings. The
gas system and support vessel are shown tied together in the JPL test
configuration in Fig. 3-8.

Specific details on the reservoir, latching valve, pressure
regulator and pressure transducer can be found elsewhere.21 The model
VCD-1000/ A-60-A flow metering valve was manufactured by Porter Instrument
Company. The valve utilizes a controller diaphragm and preset pressure
differential to control flow. The maximum inlet pressure is 250 psig with a
maximum operating temperature of 110°C. The flow range for Helium gas at an

input pressure of 50 psig is 6.0 to 60.0 sccm. However, the gas system for

the plasma source provided a krypton inlet pressure of 5 psia to the flow jjl\

metering valve, resulting in a flow range of 0.5 to 9.5 sccm.
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Table 3-2. Gas System

Characteristics

Parameter

Value

System type
Reservoir
a. Maximum operating pressure
b. Volume
c. Typical capacity (Kr)
d. Material
Latching valve
a. Type
b. Operating current (100 ns)
Pressure regulator
a. Type

b. Outlet pressure

Regulated, high pressure

1000 psi
0.5 liter
50 standard liters

Steel

Solenoid-latching

1 A-open; 0.1 A-close

Aneroid

5 + 0.3 psia

N ERL I
oy LA
Yy b

'
"y
.

c. Outlet pressure adjustable 5-10 psia T
range s
.r::."
d. Minimum inlet pressure 20 psia 3
Pressure transducer ﬂ:_
a. Type Semiconductor el
b. Mounting Built into a screw and attached -
to fill fitting -
Flow metering valve :}
a. Type diaphragm s
F
b. Flow metering range 6.0-60.0 sccm with 50 psig inlet R
pressure (for He)
c. Maximum inlet pressure 250 psig -
;-
3-12
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The gas reservoir can be pressurized to as high as 1000 psi with

LR '-.." .~.".‘ln“v

krypton gas. The reservoir should be pumped down to the 10-.5 torr range

before back-filling with pure-grade (99.95%) krypton gas. A reservoir filling

.
ﬁé setup similar to the one outlined in Fig. 3-9 should be used. A special swage-
:ﬁ lok fitting on the schrader fill-post keeps the schrader needle depressed and
- contains the o-ring seal which prevents gas leaks through the threads along
? the schrader fill-port. A valve (V3) is required beyond the special swagelok
H? fitting to prevent the gas from leaking back out of the reservoir. The
latching valve should remain closed during the reservoir filling procedure.
:il 3.3 POWER PROCESSORS
The plasma source power processor consists of three source
operating DC-DC converters (START, RUN and KEEPER), a low voltage DC-DC
converter which provides the converter control voltages, and the associated
command and telemetry circuitry. A block diagram of the overall power
ii processor is shown in Fig. 3-10. The flight power processor has been used to
: start the plasma source several thousand times and operate it for a total time
_5. in excess of fortyfive (45) hours. A modular fabrication approach was used in ﬁiif
E; constructing the flight power processors to allow for easy debugging, repair '2;;
f: and/or replacement. g;'%
Ji 3.3.1 Primary Converter Design and Operation ]
:ﬂ The operating characteristics for the three primary converters are
.7 given in Table 3-3. Current regulated, DC-DC converters are used since the
WZ loads are plasma discharges and the converters must limit their output
oy |
3 currents. The plasma source is started by activating both the START and RUN

converters, which are connected in series, after the gas flow has begun. Each
- converter contains an independent control loop, but they share a common current
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Table 3-3. Characteristics of the Three Primary DC-DC Converters j:j
Output Current ;ﬁ
Converter Potential Characteristics E’d
) (a) K
B
START* 100-300 1.0 Yo
oy
RUN 15-60 2.0 P
e
KEEPER 10-60 0.3-2.0 e

*30 seconds maximum operating time with a 0.16 duty cycle.

transducer/isolator. The open circuit voltage of the RUN converter is about B
90 volts, and that of the START converter is about 300 volts. The sum of the S
output voltages of these two converters is sufficient to initiate a glow
discharge in the hollow cathode. When this occurs, the start converter limits
the glow discharge current to one ampere. Since the RUN supply set point is
two amperes, the RUN converter is switching at the maximum pulse width
providing about 78 volts at one ampere. As the cathode emitt¢ ube

temperature rises (due to heating from ion bombardment) the cathode terminal . s

&; voltage drops. The START converter maintains the current at about one ampere =
Ei until cathode heating results in thermionic emission of electrons and the i?zg
!; cathode transfers to the arc discharge mode. At this point, the cathode Eii
3F terminal voltage drops below the RUN converter output voltage at one ampere

= allowing the RUN converter to conduct more current. This allows the cathode E;?
éi plasma voltage to drop along a negative resistance characteristic and forces é:}
2; the START converter to shut down since the cathode current is higher than the :?:
;5; START converter set point. At a cathode current of about 1.2 amperes, the .;3
) START converter is forced completely off. At this point, the gating diode in Ef

the START converter provides a bypass path for the current around the START
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e A
.; converter. The negative resistance characteristic of the arc discharge causes ;2#
N the cathode current to rapidly increase to two amperes, which is the control ;;;
set point for the RUN converter. The system is now on with the RUN supply Eif
providing 2 A at the cathode arc~discharge operating potential, typically :ia
40-50 V and the START supply is off. The system is a stable, high density égg

plasma source in this mode. The entire starting process takes less than

5 seconds. Typical start characteristics for the plasma source are shown in
Fig. 2-4, The efficiency of these supplies, during both the start and run
modes, is approximately 80 percent. Typical turn-off characteristics for the
plasma source are shown in Fig. 3-11. Cathode shut down times are generally
on the order of 2.0 ms.

As noted earlier, the primary converters are current regulated
supplies. As a result, the feedback voltage signal for the converters must be
derived from a plasma source current that is at a different potential from
that of the control loop. This is accomplished by sensing the cathode
discharge current with a shunt and using a voltage isolator. The isolator is a
magnetically coupled circuit, which has has internally isolated power supply
for the input circuit, which is referenced to the potential to be isolated.
This isolator also provides gain at the input so that relatively high-level

signals can be transmitted through the isolation transformer.

The KEEPER converter is a constant current converter with a
reversible output polarity. The KEEPER converter output voltage is referenced

to the cathode emitter tube potential (Fig. 3-10). This converter is used to SO

F I
bias the keeper electrode to preferentially extract either positive or negative AR
particles from the cathode plasma. In the electron coilection mode (keeper- }ﬂl
positive), the KEEPER has three operating set points. The set points are e

defined in terms of electron current collected by the keeper electrode, and
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are: 0.3 A, 1.2 A and 2.0 A, at potentials of 30 to 50 V. There is only one
set point with the keeper electrode biased negatively corresponding to
collected ion currents of tens of microamperes. When biased negatively, the
keeper also acts to inhibit electron flow from the cathode. Since the
collected ion current is well below the first KEEPER set point, when biased
negatively, the converter output potential remains at its maximum (open
circuit) value of approximately 88 volts.

The three primary converters each have a pulsed width modulator/
output stage like the one shown in the block diagram of Fig. 3-12. The error
amplifier amplifies the difference between the amplified and isolated current
signal based on the current reference signal. The amplified difference con-
trols the duty cycle of the pulse width modulator (PWM) which is a Motorola
MC3420. The two main reasons for the selection of this PWM are:

(1) Internal gating that prevents double pulsing of one-half of
the output transformer primary. This eliminates one possible
cause of output transformer saturation and the resulting
transistor failures.

(2) A controllable maximum duty cycle, which can be used to
prevent both output transistors from being "on" at the same
time, another possible cause of transistor failures.

The intermal phasing of this PWM is such that a low voltage from the error
amplifier causes the maximum duty cycle output from the PWM. Conversely, a
high voltage turns the PWM off.

The interface between the low-level outputs of the PWM and the
relatively high level inputs required by the output stage is provided by a
Silicon General SG 3627 driver circuit. This driver circuit features a high

threshold level to provide noise immunity, and has both source and sink output
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transistors for rapid turn on and off of the output stage. The output stage
is a standard Darlington connected set of transistors.

The three primary converters are fabricated as 2 card stacks. A
2061 aluminum base plate contains the heavy components (transformers, chokes),
the heat sunk power transistors, large capacitors, isolation amplifier, bridge
rectifier and the interface connector. The base plates are mounted on heat
conducting slides in the power supply boxes. An epoxy circuit card is mounted
to the base plate via four stainless steel standoffs and contains the majority
of the small components (resistors, diodes, integrated circuits, capacitors,
etc.). The two cards are conformally coated separately and then folded
together such that the side of the epoxy card containing the solder joints

faces the side of base plate where the power transistors are mounted.

3.3.1.1 START Converter. The START supply is a constant current, DC-DC

converter with a current set point of one ampere. A detailed schematic of the
START converter is shown in Fig. 3-13. The START and RUN converters use a
common current feedback signal which originates in the RUN converter and is
scaled at 2.5 volts/ampere. The START converter requires power inputs of

+28 VDC, +12 VDC and +5 VDC. A single output in excess of 300 VDC is provided
to the cathode. The output transformer has a turns ratio of 14 to 1l to act as
the primary high voltage source during hollow cathode startup (the RUN con-
verter is in series an supplies an additional 88 volts open circuit during
startup). Diode CR8 is the gating diode, discussed earlier, which conducts
the RUN converter current when the start converter is turned off. It should
be noted that the START converter is effectively turned off when the hollow
cathode potential drops to a point where the RUN converter output current is
above the start converter controlling band (i.e.: the START converter pulse
width modulator is forced to zero duty cycle by the current feedback signal).
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The START converter has not been designed for continuous operation
at full power output. The maximum "ON" time when mounted in its enclosure
should be limited to 30 seconds over a period of 3 minutes for a duty cycle of
0.16. It can be tested on the bench (with fan cooling) for longer periods,

but the power transistor case temperatures should be limited to 12G°C.

3.3.1.2 RUN Converter. The RUN converter, shown schematically in Fig. 3-14,

operates with a fixed setpoint of two amperes. The current is sensed with a
0.5 .. shunt and then amplified so that the scale factor is 2.5 volts per
ampere at the current isolator output. This output is connected to the start
converter as the feedback signal and to a buffer amplifier for telemetry. The
RUN converter requires power inputs of +28 VDC, +12 VDC and +5 VDC. A single
output of up to approximately 88 V, open circuit, is provided to the cathode.
This converter also contains the cathode voltage sensing and isola-
tion circuitry for telemetry. The potential between the cathode pin and body
is connected to a divider with two output taps. A relay is used to switch the
input of an isolator (whose gain is equal to 1.0) to the proper tap. The
attenuation ratios are 0.01289 (388 volts full scale) and 0.0788 (63.5 volts
full scale. The relay position is controlled by the RUN function which origi-
nates in the Telemetry Buffer Module (connector pin 10). When RUN is high
(converters off or in the START mode), Ql (see Fig. 3-14) is on which acti-
vates K1 and the isolator input is connected to the high attenuation output of
the divider (388 v.f.s.). When the cathode current reaches 1.2 amperes, RUN
goes low, and the isolator input is connected to low attenuation output of the

divider.
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3.3.1.3 KEEPER Converter. The design of the KEEPER converter is basically

the same as that of the run converter. A detailed schematic of the keeper
converter is presented in Fig. 3-15. Aside from a reversible polarity the
only differences are in the reference and feedback loops. The KEEPER con-
verter requires inputs of +28 VDC, +12 VDC and +5 VDC. A single output at
60 V and one of three currents (positive bias) is provided between the cathode
and keeper electrode (see Fig. 3-10).

The keeper was designed to provide three output electron current
levels (2,1 and 0.1 amperes). The references for these currents are set by a
switched attenuator controlled by U4 (Fig. 3-15). When the switches in U4 are
open, the reference is set for 2 amperes. C(Closing a pair of switches lowers
the reference voltage which results in a lower output current set point. With
this switching arrangement, neither a switch failure nor incorrect programming
of the switches will result in a reference voltage corresponding to more than
2 amperes. The actual keeper current set points (keeper electrode biased
positive) are 0.3 A, 1.2 A and 2.0 A.

The output current sense and isolator are connected after the
polarity reversing relay and therefore provide a two polarity feedback
signal. Since the current reference voltage is always positive, the magnitude
of the feedback signal must be extracted. This is done with U2 and U3. The
operation of U2 and U3 is easily understood by considering Fig. 3-16. The U2
circuit uses diode gating to provide a gain (K) of 0 for negative input
voltages and a gain of -1 for positive input voltages. U3 is a summing-
inverting amplifier with a gain of -5 for the input voltage and -10 for the
output voltage of U2. The output voltage of U3 is always >0 and is equal to

5 x 'inputl.
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3.3.2 Support Function Circuitry

The s;pport functions are those circuits which do not directly
operate the plasma source but which are essential for the control and monitor-
ing of the source. The major support circuitry is housekeeping power, command

buffer and isolation, and telemetry.

3.3.2.1 Housekeeping Power Processor. The housekeeping supply is comprised

of an aluminum plate containing the transformers, chokes, large capacitors,
power transistors and post mounted small components, with a small fiberglass
board mounted in the center containing other post mounted small components.
The housekeeping processor accepts the 28 VDC input power, processes the power
and then distributes +28 VDC, +12 VDC and +5 VDC where needed.

A detailed schematic of the housekeeping processor is shown in
Fig. 3-17. The main power switching and control circuit of the housekeeping
power supply consists of a pair of field effect transistors driven by a
SG 3525 switching regulator (see Fig. 3-17). A LM 350K, integrated circuit,
voltage regulator is used to provide a controlled start-up voltage for the
switching regulator. After the supply has started, terminals 4, 5 and 6 of
transformer Tl provide 10 volts for operating the switching regulator and,
through attenuators R2 and R3, the feedback voltage to close the loop around
the regulator. The regulator thus controls its supply voltage to be 10 volts.
When this is true, the three main secondary windings of Tl provide the proper
input voltages to the 7800/7900 series linear regulators which in turn provide

the desired +12 and +5 volt regulated outputs.
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3.3.2.2 Commands. There are six ground commands available to operate the
plasma source, as indicated in Table 3-4. The commands to provide 28 VDC
power to the system and to open and close the gas system latching valve are
done externally to the plasma source system. A command is comprised of an

8-bit input word defining the desired source state. The command isolator/

buffer provides the command interface for the source inverters. Input e

commands are optically is: lated, stored, and then buffered. The stored

commands are isolated and transmitted to the command source for display and/or

verification. S

3.3.2.2.1 Command Buffer. A detailed schematic of the command buffer is

shown in Fig. 3-18. The command buffer stores the commands issued by the
controlling source and shifts the voltage level from the TTL (5 V) to the high
level (12 V) signals required by the converters. The command buffer was
fabricated as a 4 card stack; a 0.3 cm thick aluminum base plate for slide

mounting, and three epoxy cards containing the command buffer electronics.

The connector is mounted on the base plate.
In the command buffer capacitors C2 and C3 are initially uncharged. el

When power is applied, these capacitors hold the clear inputs to the D-type

flipflops (U6 and U7) low, which forces the flipflops to store converter "QFF"
commands (Q high). The input commands are buffered and inverted by U2 and

U3. After the command pattern is set up, a strobe signal serves as a clock

1

for the flipflops and causes the command pattern to be stored. The voltage

levels are shifted by U8, U9 and Ul0, and, where necessary, are connected in :i:}f
parallel to provide higher current levels. The state of the flipflops is :i:¥t

.‘:\': -
buffered by U4 and part of U5 to provide an indication to the controller of §$ *

the stored command status.

¥
8
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Table 3-4. Plasma Source Command Capability

Command Function
1. Run on/off Activates/deactivates RUN converter
2. Start on/off Activates/deactivates START converter
3. Keeper on/off Activates/deactivates KEEPER converter

in high current (2.0 A electrons) col-
lection mode.

4., Keeper medium current enable Selects the medium current (1.2 A
electrons) collection mode.

5. Keeper low current enable Selects the low current (0.3 A
electrons) collection mode.

6. Keeper polarity reverse Selects positive (electron collection)
or negative (ion collection) keeper
electrode bias.

3.3.2.2.2 Command Isolator. The command isolator was added to provide opti-

cal isolation between the control point (JPL test controller or microprocessor)
and the command buffer. A detailed schematic of the isolator is shown in
Fig. 3-19. The command isolator consists of two sets of optical isolators
which transmit signals between the controller and the command buffer while
electrically isolating the two grounds.

The command isolator is mounted in a separate small box which mates
directly to the commands connector on the face plate of power processor Box B,
see Fig. 2-3. Two epoxy cards containing the optical isolator integrated
circuits are mounted to a 0,16 cm thick aluminum plate which forms one wall of
the isolator enclosure. The connectors are sandwiched between the epoxy
boards. One connector is mounted in main structural part of the box machined
from a solid billet of aluminum and the other is mounted on the other
removable wall, The isolator circuitry box is held in place via four tie down

points.

3-31

e " et a . . R R SN . . e - - N .
e e e, RN . e IR LIRSS - e te S, . T T n o e e .
R AR AR CY P N ) L L L e U R S T Pt R S
. A .j T P R BT S TR IR oo WAL T T e At e e e LT T R R P I TR TP R A
S PP A, "8 . . P ORI WP IR T I e . A T AP I I IR T I R S T . Y R A i
- PN PP S P it Boa i danda A PSP IR S S W P N O S S N ST R AP P Rl 8 N g R AP T IR W S




--ﬁ
Pl
PN
r

[ )

L]

A

3.3.2.2.3 Ground Test Controller. The plasma source is started and operated RN,

S ".,"‘A ¢ .‘;" P‘

- when the control buffer receives and processes an appropriate 8-bit word.

‘.

~
During the sounding rocket flight, the 8-bit word was to have been sent to the f.
plasma source from the SAADS programmer. A ground test controller was built
to simulate the SAADS programmer for ground testing and is shown in Fig. 3-20. ;ﬁ
The eight, two-position switches across the bottom of the front panel represent ﬁjﬁ
the eight individual bits of the input word. The switch labeled "RUN" :iif
represents bit O and the switch labeled "KEEPER BIAS" represents bit 7. The

red pushbutton, labeled "SEND CMD'", sends an 8-bit word, defined by the

positions of the eight two-position switches, to the plasma source for -~

processing. The two rows of LEDs define what bits are activated and provide
visual display of the command as it is echoed back for verification. Bits 5
and 6 are not used. A detailed schematic of the test controller is shown in

. Fig. 3-21. i

3.3.2.3 Telemetry. The telemetry circuits are provided to buffer, scale
and clamp the analog signals which show the operating condition of the plasma \?:
source and electronics. The signals are all scaled at 0 to 5 volts and are

clamped at approximately -0.5 V and +6 V. The 12 telemetry outputs are

o summarized in Table 3-5 and can be grouped into two types, plasma source

'
3 A BN

operation monitors and plasma source output monitors.

3.3.2.3.1 OQperations Monitor Telemetry. Eight of the output telemetry

functions are used for source operation monitoring. These include the hollow
o cathode voltage and current, the keeper voltage, current and polarity, gas ;Q:-

v reservoir pressure, input battery voltage and the temperature on the RUN e
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Table 3-5. Analog Telemetry Outputs
Output Actual Value -
Channel Connector Pin for 5 V +5% r
No. No. Description Output K
.‘ --\--
RO
Al
1 37 Hollow Cathode Voltage2 400 v ey
s
w fj L]
2 36 Hollow Cathode Current 2.04A F :
-
3 35 Keeper Voltage 88 Vv ;?;:
4 34 Keeper Current 2.3 A ::i
5 33 Integrated Net CurrentP 0.44 A-s E*L
6 32 Amplified Net Current 25 mA :
8 30 Gas Reservoir Pressure 480 psia
9 27 Temperature of RUN converter® -10°C
base plate
11 24 Battery Voltage 48 v
12 23 Keeper Polarity +
13 22 Net Curr. Integrator Polarity See Section 5.3
14 21 Amplified Net Curr. Polarity See Section 5.3

aIn two ranges: 0-~70 V, 0-400 V [;w;
bsaturates at 4.4 V output L
CInverted scale, 0.0 V +5% corresponds to 90°C

o
?i converter base plate. A detailed schematic of the source operation monitor ' E;_
telemetry circuitry is shown in Fig. 3-22. This circuitry includes all of the

monitor functions except the cathode voltage, which can be found in Fig. 3-14,

the RUN converter schematic. !,r-

3.3.2.3.2 Output Monitor Telemetry. All of the power supplies are isolated ifz
from spacecraft ground through a common 8.08 resistor which acts as a current ELT
path for particles flowing into and out of the plasma source. The voltage drop - t
3-37 :tf:
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across the resistor provides a means of measuring the plasma source output
current and is the input signal to the net current monitor, source output
circuitry shown in Fig. 3-23. This circuit provides output for the amplified
net current signal and polarity, and the integrated net current signal and

2 polarity. Resistors R5 and R6 form the 8.08 ground isolation common point.

_ﬁ 3.3.3 Power Processor Boxes

The power processor boxes were fabricated from 0.32 cm and 0.64 cm
6061 aluminum sheet. The four long sides of the two large boxes were salt dip
brazed together. The front and rear covers are removable, for servicing, and
held in place with stainless steel 6-32 bolts. The nominal box dimensions are

Gt 14 cm by 15 cm by 22 ecm. Each large box contains 13, 1.9 cm diameter vent

holes covered with #40 mesh. There are 8 vent holes on the top of each box

and 5 on the rear cover. The connectors on each box are mounted on the front
removable cover. The boxes are mounted to the flight deck plate via 8, 1.9 cm g,fﬁ
long, 8-32 bolts through the base plate mounting holes. The electronics cards i:i;

are slide mounted.

An exploded view of the contents of Box A is shown in Fig. 3-24
following conformal coating. This box contains the KEEPER supply (top of
box), START supply (bottom of box), and the NET CURRENT MONITOR circuitry (the
stack in the front of the box). Box A accepts the 28 V input power and the
leads from the cathode emitter tube, vessel body and KEEPER electrode.

- Instructions for removing the contents of Box A are given in Table 3-6.
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Front Cover and Contents
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Table 3-6. Disassembly of Box A ?éé
Step Action ;;f
FL
1 Remove rear cover (3/32 Allen wrench). [
2 Remove Teflon sheets.
' 3 Remove front cover retaining screws (3/32 Allen wrench). 5}:
4 Loosen retaining screws in all three connectors. %
5 Remove connectors from net current circuitry and START supply. ;i
6 Slide net current circuitry out from front, E‘)
7 Remove connector from KEEPER supply. :; E
8 Slide KEEPER supply out from back of box. ;75
9 Slide START supply out from back of box. F?u

An exploded view of the contents of Box B is shown in Fig. 3-25

following conformal coating. This box contains the HOUSEKEEPING supply (top -~
e
cf box), TELEMETRY card for monitoring source operation (.siddle of box), the ﬁ;iﬁ
RUN supply (bottom of box), and the CONTROLS circuitry (three-layer stack at Eé;
the front of the box). Box B accepts the controls and telemetry lines and .j}{
contains the pressure transducer interface. Instructions for removing the i&;;
contents of Box B are given in Table 3-7. Ei:
3.4 OVERALL PROTOTYPE FLIGHT SYSTEM
The prototype flight plasma source system is shown in the JPL test -
configuration in Fig. 2-3. Another view of the system is shown in Fig. 3-26. %ﬁ}
The JPL test configuration duplicates the spacings and dimensions of the SAADS é;éi
section in the BERT-1 sounding rocket. The power processor boxes are mounted ;;E
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Figure 3-25. Froat Cover and Contents of Power Processor Box B
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Table 3-7. Disassembly of Box B e
e
‘- .-'-
S
Step Action R
1 Remove rear cover (3/32 Allen wrench).
2 Remove Teflon sheets.
3 Remove retaining screws for CTL isolator box in top of Box B (No. 2

Phillips head).

4 Remove retaining nuts (5/32 nut driver) for CTL isolator box on the
front cover of Box B.

5 Disconnect CTL isolator box from connector on front cover of Box B.
6 Remove front cover retaining screws (3/32 Allen wrench).
7 Pull front cover back, remove retaining screws from HSKG connector

(3/16 slotted screw driver), TLM board conmector (3/32 Allen
wrench) and CTL board connector (3/16 slotted screw driver).

8 Remove connector from HSKG supply and TLM card.

9 Slide CTL circuitry out from front of box.

10 Remove connector from CTL circuitry.
11 Remove screws (3/16-inch slotted screw driver) from RUN supply con-

nector, remove connector. Set Box B front cover plate aside.

12 Slide HSKG supply out from back of box.
13 Slide TLM board out from back of box.
14 Slide RUN supply out from back of box.

on the top plate with the leads running between the packages and the gas
system is mounted on the bottom plate. The open area between top of the gas
system and bottom of the power processor plate was to be occupied by a deck
plate containing the battery pack for the system. The support vessel was
going to be mounted directly to the sounding rocket wall for the flight. This
vessel is mounted on a support bracket in the test configuration for
convenience. Components which are painted red were to be removed before

sounding rocket integration.
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Vent holes in the power processor boxes allow the supplies to out-
gas quickly. The connector rack, shown on the gas system plate in Fig. 3-26,
provides mechanical support for connectors to cables for the KEEPER electrode
and support vessel body common point (bottom connector), gas pressure trans-—
ducer (center connector), and the latching valve (top connector). The output
side of the pressure regulator is comnnected to the input side of the flow
metering valve via 0.32 cm outside diameter stainless steel tubing and a AN
and swagelok fitting, respectively. The output side of the flow metering
valve is connected to the hollow cathode gas inlet via 0.48 cm outside
diameter Tygon tubing and swagelok fittings. Two porous, metallic plugs are
slip fitted into the Tygon tubing near the hollow cathode gas inlet to force
plasma recombination should the plasma back up in the flow tube. This
prevents the plasma from grounding and extinguishing the arc discharge.

The external cable routing can be seen in Fig. 2-3. The cathode
emitter tube lead runs from Box A directly to the emitter tube where it is lug
terminated. The cable is 23 AWG, shielded Teflon cable rated for 200°C. The
leads for the keeper electrode and source body are 20 Ga, shielded, Teflon
coated wires which run from Box A to the connector rack on the gas system deck
plate and then are lug terminated on their respective posts. The cable for
the pressure transducer is a shielded, 20 Ga, 4 conductor which runs from
Box B to the connector rack on the gas system deck plate. The pressure
transducer lead, which is comprised of a five conductor (28 Ga) shielded
bundle, is connector mounted in the rack. Two cable bundles carried power and
signals between the boxes. Connectors from the SAADS/BERT-1 wiring harmess
were to mate with the power input connector on Box A, the controls and
telemetry connectors on Box B, and the latching vaive input on the gas plate

connector rack.
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SECTION 4 ]
’ Y
MECHANICAL AND THERMAL TESTING ]
AN

The power processor boxes, gas system and cathode and vessel were

subjected to shock and random vibration testing at AFGL. The power processor
boxes were also subjected to thermal cycling tests at AFGL. No system per-

formance degradations were noted following the mechanical and thermal testing.

4.1 GAS SYSTEM MECHANICAL TESTING

The gas system was subjected to mechanical testing in the configu-
ration shown in Figs. 3-6 and 3-7 and was mounted on the magnesium flight deck
plate. The gas system axes orientations, as defined for mechanical testing,
are shown in Fig. 4-1. A photograph of the gas system, mounted on the shake
table for shock and vibration testing, along the Z axis, is shown in Fig. 4-2.

A 25 G, 11 ms shock pulse was applied to the gas system along each
axis. A typical shock pulse response signal from the control accelerometer is
shown in Fig. 4-3. This particular shock pulse was along the Z axis. The
shaker at AFGL has no provisions for the use of a monitor accelerometer located
on the test article, during shock testing.

The random vibration tests were run for five minutes on each axis
and were based on the programmed reference spectrum shown in Fig. 4-4, The
spectrum rises at +6 dB/Oct from 20 to 40 Hz and has a flat spectrum at
0.02 GSQR/Hz from 40 to 2000 Hz. Frequencies beyond 2000 Hz were not moni-
tored. Typical vibration test, response signals for the control (on shake
table) and monitor (on test article) accelerometers are shown in Fig. 4-5.

These particular signals are for vibration along the Z axis. As can be seen

4-1
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Figure 4-1. Axis Orientations for Cas System Mechanical Testing




YTy

L Tk Sl

e g

T

SIXy 7 3uoly Buy3isa] UOTIBIQTA PUBR D0US 10J pajuncl Wa3lsL§ ses -g- 2i1n81g

A

Y

- '»‘ )
SN

s
..-
.




walsAg sen jo sIxXy-Z JuoTy portddy asIng isal o0ys

siun Asesuge ‘JNIL

oe-

8i-

cl-

cl

8l

vZ

ot

9 ‘NOILVYE 31300V




L T T T T T -, a4 T i e il -2 ittt ~a o0 e he 2 Bitn A Dl

TTITTT T 1 LLARAER BB T T T 1771 T T 77 g
N
- —8
s R
B ~
= ] =
3
- 1o
. =)
9]
| @
-1 =%
w
5]
e
@
-
= _ o
Ul
U
I ~
. o
o 5 g
w i
) 00
o 2
o =9}
[V +
()]
- s 8
p— -
n =
- N 5]
Cal
- &
- ©
o -
. 2
B >
g
— i
~
]
- ~
- )
o0
o
[£ 9
et 11 TR sll\mL leigep it o ©
(o] '-. -— - -
- o S 8 §
o )
=)

ZH/z9 'ALISNIA 1YY 1D3dS HIMOJ

4-5




-.\.f.. g0 "

o

o

' . . . i ‘i ... i . ........ i I toal o Sl L .
RN R e N e R W R I

3uyayse] T[EOTUBRYDI waIsAS sey Bulang
S1939W0I3T9O0Y 101TUON pUe TO13U0) ayjl 103 sTeud1g asuodsay 3S9] UOTIBIQIA TeITdLL

ZH 'ADN3IND3Y4

154074 0001 00l
TT T 1 1.1 1 T T TTrr T T T 1

[(s]
—

i
-

AL

T

mryrTt

AN

|

f§\>\u1 ! TN

TOHINOD

l[T1|F I
I I | prrrtod

LS L

| I T T B I L | [ T S WO R N

-
b

'¢~t 2an8T14

10000

1000 -
@]
=
m
ol
%)
0
m
(@]
l

0 >
10°0 =
O

m

2

i<

—

..A

o

g

(0] I
N

o't

46

.
~

.-A
-
‘4

a = o

~
=
- Y

FEVE VS VR

al

o .




——
P L
o Lt

in Fig. 4-2, the monitor accelerometer was located on the magnesium gas system
mounting plate far from the plate supports which is the likely cause of

low-end frequency ringing.

4.2 CATHODE AND VESSEL MECHANICAL TESTING

The flight vessel was three axis, shock and vibration tested at
AFGL. The vessel axis orientations, defined for shock and vibration testing,
are shown in Fig. 4-6. The support vessel is shown mounted for shock and
vibration testing in Fig. 4~7. A 25 G, 11 msec shock pulse was applied to the
vessel along each axis, as before. A typical shock pulse, response signal
from the control accelerometer is shown in Fig. 4-8. The random vibration
tests were run for 5 minutes on each axis and were again based on the pro-
grammed reference spectrum shown in Fig. 4-4. Typical vibration test, response
signals for the control (on shake table) and monitor (on test article)
accelerometers are shown in Fig. 4-9. The resonances shown on the monitor
accelerometer curve most likely result from vibrations of the cathode emitter

tube which has a non-rigidly supported length of approximately 13 cm.

4.3 POWuLR PROCESSOR MECHANICAL TESTING

Each power processor box was subjected to shock and random vibra-
tion testing separately. Only typical results for one box will be given. The
power processor box axes orientations, as defined for mechanical testing, are
shown in Fig. 4-10. Box A (Z axis) is shown mounted on the shaker for shock

and vibration testing in Fig. 4-~11.
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A 25 G, 11 ms shock pulse was applied to each box along each axis.
A typical shock pulse response signal from the control accelerometer is shown
in Fig. 4-12. The particular shock pulse shown in Fig. 4-12 was along the
Z axis of Box A.

The random vibration tests were run for five minutes on each axis
of each box and were again based on the programmed reference spectrum shown in
Fig. 4-4. Typical random vibration test response signals for the monitor (on
test article) accelerometer and the control (on shake table) accelerometer
which were obtained in this instance during Z axis vibration testing of Box A
are shown in Fig. 4-13.

As can be seen in Fig. 4-11, the monitor accelerometer is located
in the middle of the top of the power processor boxes. The top covers of each
box have a thickness of approximately 0.15 cm. This surface can act as a
"drum head" during the random vibration tests resulting in resonances such as

those seen in Fig. 4-13.

4.4 POWER PROCESSOR THERMAL CYCLING TESTS

The power processor boxes were subjected to thermal cycling tests
at AFGL. The boxes were placed side-by-side in a Associated Testing Labora-
tory, Inc., Model SK-3102 refrigerator/oven. The box cabling and a tempera-
ture monitor were fed into the refrigerator/oven compartment through a small
port on the side. Thermal cycling requirements included a 0 to 60°C

temperature envelope and ambient air pressure.
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SECTION 5

PLASMA SOQURCE QPERATIiON

The plasma source startup procedure, resistive load checkout proce-

dure and operational testing results are described in this section.

5.1 PLASMA SOURCE START-UP

The plasma source is started and operated when the internal control
circuitry receives and processes an appropriate 8-bit word. During the sound-
ing rocket flight, the 8-bit word would have been sent to the plasma source
from the SAADS programmer. A controller was built for ground testing to simu-
late the SAADS programmer (see Section 3.3.2.2.3). All eight of the two posi-
tion switches across the bottom of the front panel of the controller should
initially be in the UP position. The lower row of LEDs should be lighted.

The red pushbutton labeled 'SEND CMD' sends an 8-bit word, defined by the
positions of the eight switches, to the plasma source for processing. If all
of the switches are in the UP position and all of LED's in the lower row are
not lighted, the 'SEND CMD' button should be depressed to initialize the
controller.

The plasma source is now ready to be started. The starting and
operating procedure is given in Table 5-1. Quantities enclosed in quotes,

'XXX', represent specifically referenced switches on the controller console.

The keeper polarity should NEVER be changed while the KEEPER power supply is

on.
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Table 5-1. Starting and Operating Procedure for Plasma Source

Eadic-aline SIS MO (Sl ) ARCHRE odin- e i g aoul ol Ml o

Step

Action

10

Open latching valve to begin gas flow.
Set eight, two position switches in the UP position.

Turn-on power supplies (28 V for plasma source, 5 V for
controller).

Depress 'SEND CMD' if eight lower LEDS are not lighted.

To start, change 'RUN' switch (bit 0) to lower position (Lower
LED will go out). Depress 'SEND CMD' (Upper LED will light).
The RUN supply is now on.

Change 'START' switch (bit 1) to lower position (Lower LED will
go out). Depress 'SEND CMD' (Upper LED will light). The RUN
and START supplies are on.

If starting noise shuts off either/both the RUN and/or START
supply(s), the upper LED(s) will go out even though the corre-
sponding switch(es) is (are) still in the down position. Set
all switches UP and depress 'SEND CMD' (All lower LEDS on, all
upper LEDS off). Repeat Steps 5 and 6 except keep 'SEND CMD'
depressed at the end of Step 6.

When the telemetry output for the cathode current reaches
approximately 4.92 V +2% and remains there, the cathode is ON
(Release 'SEND CMD' if still depressed).

Set 'START' switch in UP position (both LEDS on), depress 'SEND
CMD' (upper LED off). (The start supply shuts off automati- e
cally, this step is a safeguard.) ~e

The Keeper electrode can be biased positively (Electron Collec- el
tion, switch DOWN) or negatively (Ion Collection, switch UP). i;:i
Select desired Collection Mode, set switch labeled 'KEEPER

BIAS' (bit 7) and depress 'SEND CMD'. 1If the switch labeled el d
'"HIGH CUR' is in the down position DO NOT change 'KEEPER t}?}
BIAS'. Place switch in UP position and depress 'SEND CMD' R
first. The switch labeled 'HIGH CUR' serves as the KEEPER
power supply ON/OFF. ' ST

A. Positive Bias (Switch DOWN)

Three current collection modes are available when the
KEEPER is set for positive bias. These modes are used to
enhance plasma source emission by activily extracting elec-
trons. The modes are high (2.0 A) medium (1.2 A) and low
(0.3 A) collected electron currents.
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Table 5-1. Starting and Operating Procedure for Plasma Source (Continued)
Step Action
10 Cont. 1) To get the high current collection keeper mode, place

the switch labeled 'HIGH CUR' (bit 2) in the down posi-

tion, depress 'SEND CMD'. The keeper is now in the

high current collection (2.0 A) mode. To turn the high
current mode OFF, place the switch labeled 'HIGH CUR'

in the UP position and press 'SEND CMD'.

2) To get the medium current collection keeper mode, place
the switches labeled 'HIGH CUR' and 'MED CUR' (bits 2 &

3) in the down position and depress 'SEND CMD'. The
keeper medium collected current (1.2 A) mode is now
ON. To turn the medium current mode off, place the
switches labeled 'HIGH CUR' and 'MED CUR' in the UP
position and depress 'SEND CMD'. Do not change the
switch labeled 'MED CUR' to the down position if the
switch labeled 'HIGH CUR' is already in the down
position.

3) To get the low collected current keeper mode, place the
switches labeled 'HIGH CUR' and 'LOW CUR' (bits 2 & 4)

in the DOWN position and depress 'SEND CMD'. The
keeper is now in the low collected (0.3 A) current
mode. To turn the low current mode otff, place the
switches labeled 'HIGH CUR' and 'LOW CUR' in the UP
positions and depress 'SEND CMD'. Do not change the
switch labeled 'LOW CUR' to the down position if the
switch labeled 'HIGH CUR' is already in the down
position.

Negative Bias (Switch UP)

Only ONE positive current collection mode is available.
This bias appears to activily inhibit the electron flow

from the hol- low cathode, the collected ion current is on

the order of several tens of microamperes. To get the
negative bias current mode, place the switch labeled
'KEEPER BIAS' in the UP position and depress 'SEND CMD'.
Then place the switch labeled ‘HIGH CUR' in the down

position and depress 'SEND CMD'. The KEEPER electrode is

now biased negatively. To turn the mode off, place the
switch labeled 'HIGH CUR' in the UP position and press
'SEND CMD'.
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Table 5-1. Starting and Operating Procedure for Plasma Source (Continued)

Step Action

11 To shut off the plasma source system, set all switches in the
UP positions and depress 'SEND CMD'.

12 Close latching valve and shut down power sources.

5.2 SYSTEM FUNCTIONAL CHECKOUT

The plasma source system checkout procedure involves running the
power processor on a resistive load which simulates the plasma load expected
during regular operation. During system checkout the three leads which attach
to the plasma source vessel (emitter tube, keeper electrode and vessel body)
should be removed from the vessel (see Fig. 3-1). A load of 20 to 30 should
be placed between the leads for the keeper electrode and cathode emitter tube
for KEEPER power supply checkout. A load of 20 to 30 should be placed
between the leads for the cathode emitter tube and the vessel body for RUN
power supply checkout. A load of 300 to 360 should be placed between the
leads for the cathode emitter tube and the vessel body for START and START/RUN
power supply checkout. The load resistors for KEEPER and RUN power checkout
should be able to support up to a 120 W power load. The load resistors chosen
for START and START/RUN power supply checkout should be able to support up to
a 400 W power load.

The operating sequence given in Table 5-1 should be used for plasma
source checkout testing on a resistive load. The operational characteristics
for plasma source operation on a resistive load are given in Table 5-2,

During resistive load testing, the latching valve shou.d remain closed. The

starting noise shut/off problem mentioned in Step 7 of Table 5-1 is not a
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problem during checkout testing. The three power supplies, START, RUN and
KEEPER can be tested independently. As noted in Table 5-2, the KEEPER power
supply will exhibit three operational modes in both keeper biases during

resistive load testing.

5.3 SYSTEM OPERATIONAL CHARACTERISTICS
The starting and operating procedure for the plasma source system
is given in Section 5.1. This section discusses the operational characteris-

tics of the plasma source in terms of the telemetry outputs when the source is

operating in vacuum and producing a plasma. Calibration charts are provided

E; for each telemetry output when applicable.

.{5 5.3.1 Battery Voltage Telemetry

The battery voltage telemetry signal is used to monitor the 28 VDC
+3 VDC input voltage provided by the battery pack. A calibration curve is
shown in Fig. 5-1. This curve was generated by varying the output voltage of

a power supply and monitoring the output telemetry signal.

5.3.2 Box Temperature Telemetry

The box temperature telemetry signal is used to monitor the temper-
ature of the base plate of the RUN power supply in electronics Box A. The RUN
power supply has the highest duty cycle and should be the warmest supply of
either box. A calibration curve is shown in Fig. 5-2. This curve was

generated by using data points obtained during the thermal cycling tests.
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Also shown is a curve based on the calibration chart of the thermistor without

corrections for conditioning by real electronics.

5.3.3 Gas Pressure Telemetry

The gas pressure telemetry signal is used to monitor the pressure
inside the Kr reservoir. A calibration curve is shown in Fig. 5-3. This
curve was generated by monitoring the telemetry output as the reservoir was
filled. The pressure transducer, which was AFGL supplied equipment, has
failed since this curve was plotted (see Reference 21, Section 3-E for details

on the failure mode).

5.3.4 Cathode Current Telemetry

The cathode current telemetry signal is used to monitor the current
flowing between the cathode emitter tube and barrel during hollow cathode
operation. The START and RUN power supplies are constant current sources at
1.0 A and 2.0 A, respectively. As a result, the telemetry output shows only
two values; a glow discharge at 1.0 A corresponds to a telemetry output of
2.42 V +5 percent, and an arc discharge at 2.0 A corresponds to a telemetry
output of 4.92 V +5 percent. A calibration curve obtained from results of

resistive load testing is shown in Fig. 5-4,

5.3.5 Cathode Voltage Telemetry

The cathode voltage telemetry signal is used to monitor the voltage
drop between the cathode emitter tube and barrel during hollow cathode opera-
tion. This telemetry output has two different sensitivities depending upon
whether the cathode is operating in a glow or arc discharge. This was
required since actual potential differences between these two cathode modes
differ by over an order of magnitude. The sensitivity used is a function of

5-9

. e .t S e e " . . mlel e . -
. . PO T S SR U ot

.t s P

D P L T . Ve

T "
5
Pl

3

At
[ 'y a s
O AMAAF

[

L.
a
..

L)
.
v,

o

Pl

-y .
,

v

v 4, a
,
.

N .
L T A

P
y,‘r'. ]

.

e
y
P4

. NN L. ' T a et .
PSS S S USRI D W/ SR R AT A R

Bt A T s



Sr— DAL Pt { it NLEVVRE I
LLODNN SRR i SR | ORI
1 ', LI B LA D 1 RN sl r <<_ DAY

I JUY PO SRR ROMWAFRE MM [V P | . AR fe

LTV O e i PR 4 P P i
S0 4 _\.\..wq\‘a.....f B A.,,_u-_ \\\ \_......- ........a IO ﬁ
Y AL N AP APRA S N S A

o
[ S
; 5]
o]
| 5
>3
' 0
k¢]
V]
—
by 2,
- e
©
U
.
. o
. - S 2
n
-
U
>
" )
K [N
<o
- o8] M
Ioa
ﬂw 0
. @B D o
w - —
. x o (
a E e
Y 7]
a —
. 2
v &
3 | S .
w.ﬁ -— u
4 0
N
] )
g =
L. =9}
; @
]
<
. -
! )
ol
v .
= .
. 3 J
(} Ub «..
_ _ _ | | _ _ o 7
- o 0 o v o v e 0 o .
3 < ™ ™ [3Y] o~ — - o o ,.....‘
' ..a --L
X S110A "1 NdLNO AY13IWITIL 3HNSSIHd SVO e

. B o e e e
- . - PP R R Y Tee . N LI T LA LIPS SR

n- 4......- ..‘-.....-a.-‘..., .:.... - ...‘ <.....4. .... ..ﬂ...A.. Il N JI.-.--Qf’\J SN PAEREAER

. . ,.. !




[ i [ §
5.0 - —
40 -
S
>
>
D
a.
'_
2
o
E 30 —
b=
w
s
w
|
wl
-
= ©
w
[0 o8
o
3 20 —
e O DATA POINTS
a FROM RESISTIVE
o LOAD TESTING
-
< O DATAPOINTS
FROM PLASMA
LOAD OPERATION
1.0 _
oy
)
ey
o]
0 l | | | iy
0 0.5 1.0 15 2.0 L
CATHODE CURRENT, amperes e

Figure 5-4. Cathode Current Telemetry Otuput Calibration Curve ‘fk




LAY TR R R ERY VW

Lj:j
‘-._'n-,
k

s:ﬁ .

. the cathode current. Calibration curves for the low sensitivity (cathode cur- :}i{
rent is 1.0 A, range 0-400 V) and high sensitivity (cathode current is 2.0 A, ;{?3
range 0-70 V) cathode voltage telemetry outputs are shown in Figs. 5-5 and E;'
)
5-6, respectively. - )
DAY

.f\':-

o

5.3.6 Keeper Current Telemetry E,“.\ ,
« ".L"-

The keeper current telemetry signal is used to monitor the charged 51::

particle current flowing from the hollow cathode to the keeper electrode. The

KEEPER power supply has three, constant current, operational set points which

are 0.3 A, 1.2 A and 2.0 A, for collected electron current. One operational

set point exists for collected ion current. A calibration curve for the

KEEPER current telemetry output is shown in Fig. 5-7. The data for the curve
was obtained while running the KEEPER power supply on a 20.5 Q resistive
loa. The telemetry output valves for operation on a plasma load are also

noted on the curve and are: for the collected electron low current mode; .;~v

S w, o~
S
0.47 V, for the medium current mode; 2.34 V, and for the high current mode; A

4,13 V. The telemetry output value for ion collection is 0.05 V and

corresponds to tens of microamperes of collected ion current.

5.3.7 Keeper Voltage Telemetry L
The keeper voltage telemetry signal is used to monitor the poten-
tial difference between the emitter tube and keeper electrode. The poten- ;{;f
tial between the keeper electrode and emitter tube does not vary much between
the three modes for electron collection. The normal keeper telemetry output
is between 2 V and 3 V for electron collection. When the keeper is operated
to collect ions (negative bias), the normal keeper potential telemetry output

is near 5.0 V. A calibration curve for the keeper potential telemetry output
5-12 S,
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is shown in Fig. 5-8. The curve was generated from data obtained while
operating the KEEPER power supply on a resistive load. The operating range

for plasma load operation is also shown.

5.3.8 Keeper Polarity Telemetry

The keeper polarity telemetry signal is used to monitor the
polarity of keeper electrode. When the keeper is biased positively (electron
collection), the keeper polaritv telemetry output is approximately 0.02 V.
When the keeper is biased negatively (ion collection), the keeper polarity
telemetry output is approximately 5.28 V. This characteristic is shown

graphically in Fig. 5-9.

5.3.9 Amplified Net Current Telemetry

The amplified net current telemetry signal is used to monitor the
net charged particle current leaving the plasma source during a discharging
event. The current is determined by monitoring the valtage drop through a
8.08 resistor combination which is the common point to spacecraft ground for
the entire plasma source system. The amplification circuit has a nominal gain
of 25. A calibration curve for this telemetry output is shown in Fig. 5-10
and was obtained through calculations (dotted line). Some experimental data
points are also shown. The data points were obtained by placing a biased
metal plate directly downstream of the plasma source opening. The electron
current extracted by the biased metal plate was monitored and could be varied
by varying the plate bias. The electron currents collected by the metal plate
are shown with respect to the corresponding amplified net current telemetry

outputs as the discreet data points in Fig. 5-10.
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5.3.10 Amplified Net Current Polarity Telemetry

The amplified, net current, polarity telemetry signal is used to
monitor the sign of the net charge leaving the plasma source. The output sig-
nal of near 0.0 V means electrons are flowing from spacecraft ground through
the 8.08 resisistor into the source. An output signal of near 5.0 V means
electrons are flowing from the source through the 8.08 resistor, to spacecraft
ground. Due to the high electron leakage current from the source to the
background plasma, the amplified, net current, polarity telemetry output
always indicates a negative net charge leaving the source (electrons coming

from spacecraft ground into the plasma source).

5.3.11 Integrated Net Current Telemetry

The integrated net current telemetry signal is used to monitor the
total charge (Coulombs) leaving the source during a discharging event. The
integrator circuit saturates when approximately 0.44 Coulombs,(Qsat) of
charge have left the source. Table 5-3 shows the time it takes to saturate

the integrator due to electron leakage current versus the plasma source oper-

ating mode. As can be seen, the integrator saturates in about 6 minutes with
the plasma source operating in the high keeper current mode. All other elec- jﬁ:l
tron leakage currents resulted in longer integrator saturation times. A cali- - ]

bration curve for the integrator telemetry output versus total emitted charge

is shown in Fig. 5-11. This curve was generated by biasing the metal plate to
collect a specific current and monitoring the time versus the telemetry output .

to define specific values.
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; Table 5-3. Integrator Saturation Times Versus Plasma Source Mode
. for Various Leakage Currents

Source Mode

Time Corresponding Leakage Current
Cathode Keeper (s) (mA)

¥

On Ooff 1975 0.22

On Le 724 0.61

On Mc 460 0.96
' On He 360 1.22 3
i 5.3.12 Integrated Net Current Polarity Telemetry

The integrated, net current, polarity telemetry output is used to
monitor the sign of the net charge being accumulated by the integrator. If
the sign of the accumulated charge is positive, the telemetry output will be
approximately 0.0 V. If the sign of the net charge is negativg, the telemetry
output will be approximately 5.0 V. Due to the high electron leakage current
from the source, the integrated net current polarity telemetry output always

indicates an accumulation of negative charge.

5.4 PLASMA SOURCE SYSTEM TESTING

Plasma source system operational testing has been conducted at both
AFGL and JPL. The testing has included determination of the system ON/OFF and

keeper operation characteristics. In addition, the system's ability to dis-

r
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charge a capacitively-biased plate was examined along with evaluating how much

. ~To
-‘.- - 0y
X current could be collected by an activily-biased plate. e
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5.4.1 Operational Characteristics

The plasma source startup procedure causes the hollow cathode to go
from an OFF condition to a high-voltage, low-current glow discharge and then
to the ON condition which is a low-voltage, high-current arc discharge. This
cathode start sequence is shown in Fig. 2-4. A series of four START-RUN-OFF
sequences from the plasma source telemetry outputs are shown in Fig. 5-12.

The startup time was on the order of 1.5 s for all four sequences. The small
cusp at the beginning of each start sequence in the cathode voltage telemetry
output resulted from the activation of the RUN supply. When the START supply
was activated, the cathode voltage increased to about 340 V (T/M 3.3V) and the
cathode current increased to 1 A (T/M 2.5V) to support a glow discharge.
During sequences A and C the cathode potential dropped to about 35 V (T/M
2.5V) and the cathode current increased to 2 A (T/M 4.9V) turning off the
START supply and placing the hollow cathode in the ON condition once the
cathode emitter tube was hot enough to support thermionic emission of
electrons. The keeper voltage increased during sequences A and C since the
KEEPER supply is electrically floating, with the cathode emitter tube acting
as a common point for it, and the START and RUN supplies. In sequences B and
D, the KEEPER supply was activated at the same time as the RUN supply. During
the cathode glow discharge, the KEEPER supply saw an open circuit condition
with the voltage at about 80 V (T/M 4.9V). Once a cathode arc discharge was
initiated, the plasma impedance between the hollow cathode and keeper
electrode dropped so that the KEEPER could extract plasma from the cathode and
collect a 2.0 A (T/M 4.9V) current at a potential difference of 25 V (T/M
2.0V). This allowed the cathode arc discharge potential to drop to about 20 V
(T/M 2.0V). Typical turn off times for the plasma source system were on the

order of 2.0 ms as can be seen in Fig. 3-l11l.
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:; Figure 5-12. Plasma Source ON/OFF Sequence (T/M Outputs)

5-24

' _il"
PR
pY
ES




The plasma source system has l4 operational states which are deter-
mined by the status of the cathode and keeper and are defined in Table S5-4. A
plasma source system run exhibiting states 1, 6, 9, 8, 7, 11, 12 and 10 (in
order of appearance) through the output telemetry signals, is shown in
Fig. 5-13. The currents corresponding to the low, medium and high keeper
modes are approximately 0.3 A, 1.2 A and 2.0 A of collected electron current,
respectively. In the self-heating modes, ion bombardment keeps the cathode
emitter tube hot enough to thermionically emit electrons. There is no self-
heating mode corresponding to the low current keeper mode because the current
is too low to sustain an adequate flow of backstreaming ions to self heat the
cathode. Ion currents collected by the keeper in the reverse bias mode (keeper
negative) are on the order of, at most, tens of microamperes, and as a result

are not detectable on the keeper current telemetry output signal.

5.4.2 Functional Characteristics

Tests were conducted to evaluate how well the plasma source could
discharge biased plates. An aluminum plate, 30 cm on a side, was placed 12 cm
downstream of the plasma source opening. The plate could be biased by charg-
ing a 500 pf capacitor attached to the plate or by applying a bias directly
with a variable voltage power supply. The sounding rocket capacitance was
determined using the equivalent sphere method whereby the rocket is assumed to
be a sphere with a surface area equal to that of the actual sounding rocket.
The capacitance is then calculated usingZQ

= 4T € A
C=4 oR(l + R/ D)
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Table 5-4. Plasma Source Operational States

Command Word Bits2

System Cathode Keeper
State Status ModeP 01 2 3 4 5 6 73
1 START OFF 1100 0 - - -~
2 START (e-) HC 1 1100 - -1 ]
3 START (e-) MC 11110 - -1
4 START (e-) LC 1 1101 - - 1
5 START (i+) 11100 - -0
6 ON OFF 1 0 0 0 0 - - -
7 ON (e-) HC 1 0100 - -1
8 ON (e-) MC 1 0110 - -1
9 ON (e-) LC 1 0101 - -1
10 ON (i+) 1 601 00 - -0
11¢ OFF (e-) HC 0 0L 0 0 - -1
12¢ OFF (e-) MC 0 o110 - -1
13¢ OFF (e-) LC 0 0L 01 - -1
14 OFF OFF 0 00 00 - - -

4Bits 5 and 6 not used, "~'" under bit 7 means state obtained for
either bias

b(e-) HC - High current electron collection mode, (e-) MC - Medium
current electron collection mode, (e-) LC - Low current electron col-
lection mode, (i+) ion collection mode

CCathode self heating modes, STATE 12 is unstable, STATE 13 not
supported
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where R is the radius of the equivalent sphere (3 m), A is the Debye

D
length and o is the permittivity constant. Several values of capacitance
are given in Table 5-5 for various Debye lengths. A value of 500 pf was
chosen since a high-voltage, 500 pf capacitor was readily available though a
value of 20 nf is more consistent with the expected sounding rocket
capacitance. A high-voltage power supply was used to charge the capacitor
through a 22 M charging resistor. The plate biases ranged from +100 V to
+2500 V. A typical discharge pulse is shown in Fig. 5-14, which has a pulse
duration of approximately 35 ms with a peak discharge current of approximately
17 mA. The initial plate potential was 590 V.

The current which could be extracted from the plasma source was
evaluated by biasing the plate directly, with a variable voltage power sup-
ply. Then, the plasma source was activated to examine the initial discharge
pulse. The current collected by the plate could also be monitored while the
plate potential was varied. A typical plate discharge pulse is shown in
Fig. 5-15a for a directly biased plate originally at 805 V, as seen in
Fig. 5-15b. The pulse width is approximately 10 ms with a peak height of
23 mA, The plate potential was held to about 5 V, while drawing a constant
8 mA electron current. When the power supply output voltage was increased,
the plate potential remained constant and the collected current increaséd.

The plasma source net current monitoring system was also evaluated
using the directly biased plate. Typical telemetry outputs are shown for the
plasma source net current integrator and amplified net current monitor in the
curves of Fig. 5-16 for current collection by a positively-biased plate.

These curves were generated while operating the plasma source in the medium
current keeper mode. These curves show how, as the collected electron current

increases, the slope of the integrator gets steeper. The plate bias and
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Table 5-5. Sounding Rocket Capacitance Versus Debye Length

Debye Length Capacitance
(m) (nF)
10.0 0.44
3.0 0.67
1.0 1.34
0.5 2.34
0.1 10.34
0.05 20.35
0.01 100.43

actual values of the collected electron current (see Section 5.3.10) are given
for each step of the curve for the amplified net current signal output. The
integrator saturates when about 0.44 Coulombs have been emitted from the
plasma source. A set of curves showing the electron current collected by the
biased plate as a function of plate potential for the five source states where
the keeper is also set to collect electrons (states 7-9, 11, 12) is shown in
Fig. 5-17. Operation of the plasma source in the high-curreant keeper mode,
pulls the plate potential down the lowest for a given collected current. The
self-heating, high-current keeper mode is the next best. The data for the
low-current keeper mode end at 100 V since the discharge extinguished itself
at this point repeatedly. The low-current keeper mode cannot support a self-
heating mode.

Typical net current monitor telemetry outputs are shown in
Fig. 5-18 for current collection by a negatively-biased plate (ion collec-

tion) located 10 cm downstream of the keeper electrode. The integrator slope
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CONCLUSIONS
[
Y r’ (:
.:. ':.:“l:
:j A neutral plasma source, for use in active spacecraft charge con- iﬁ;
A~ trol, has been developed, fabricated, and characterized and was delivered to fﬁﬁ
| S
. the Air Force Geophysics Laboratory on 18 April, 1985. The functional design R
requirements and actual system characteristics of the plasma source spacecraft !’Q
. discharge device are summarized in Table 6-1. As can be seen by examining ;;;
b
Table 6-1, all system requirements have been met or exceeded. In ground simu- {TE
L
lation tests the plasma source successfully discharged capacitivily biased iﬁp
- plates, from as high as +2500V, to ground potential. 1In addition, activily ;;ﬂ
biased plates could be discharged and clamped at +5V with respect to ground. o
Qualification tests completed by AFGL personnel have demonstrated that the L
plasma source system met the vibation, shock and thermal requirements.
g The plasma source had several novel features and characteristics.
" Fourteen (14) system operational states were available including five (5)
electron enhanced modes, an ion enhanced mode and a straight cathode dis-
j' charge. This device could also be easily run on xenon and argon in addition ;iﬁ
.i to krypton. The field enhanced refractory metal (FERM) hollow cathode con- :fﬁf
= tained no low work function impregnants to prevent poisoning which could bfﬁ
. -
o result in complete cathode failure after exposure to air. In addition, the :Eﬂ
:; FERM hollow cathode allowed for the plasma generation process to be contained NN

completely within the hollow cathode. No external sustaining electrodes were -

necessary. The system flexibility should make the device a valuable tool for o

K
S

-
..

>,

spacecraft charge control. .
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Table 6-1. Plasma Source Functional Requirements And Characteristics

Parameter Requirement Actual
Startup Time:
Cold <5s 3-45s
Hot <5 s <ls
Working Gas Krypton Krypton
Startup Energy 2500 W-s 1904 W-s
Run Power 200 W 196 wa
Particle Currents:
Extracted Electron >20 mA 20 ~ 6000 mA
Extracted Ion >20 pA 352 pAD
Electron Leakage >2 mA 17 pA
Mass <12.25 kg 12.2 kg
Lifetime
Total 450 s 10800P
Duty Cycle (Max.) 0.3 0.001 - 1.0
Starts »36 350b

4 Value for highest power ion collection mode, State 7 (see Table 5-4)

possible.

Highest value seen during characterization testing, higher values
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